기본 콘텐츠로 건너뛰기

[VSCode] Python flask 디버깅 환경 구성 (Mac)

[VSCode] Python flask 디버깅 환경 구성 (Mac)

brew install python3등 이미 python이 설치되어 있는 상태에서 진행.

1. VSCode 설치

2. VSCode 실행 > 플러그인 설치 : Python, Python for VSCode, Python Extension Pack

3. 터미널 or finder등으로 적당한 곳에 디렉토리 생성 (ex. ${HOME}/VSCode)

4. 실행되어 있는 VSCode에서 생성한 디렉토리 열기

5. VSCode 터미널 탭 실행

6. 가상 환경 구성 - VSCode 터미널 탭에서 > $ pythom -m venv flask_test

7. VSCode화면에서 CMD + Shift + P 누르고

"Python: Select Interpreter"를 선택 > 생성된 가상환경의 python 선택 (ex : ./flask_test/bin/python)

8. VSCode화면 터미널이 venv환경으로 변경되었으면, 그 터미널에서 flask 모듈 설치 > $ pip3 install flask

9. VSCode화면 좌측 Explorer > flask_test에 우클릭 후 New File 생성 : myapp.py (대충 아래와 같이 쓰고, hi에 Break Point 설정

from flask import Flask app = Flask(__name__) @app.route('/') def index(): hi = 'hello world' return hi if __name__ == '__main__': app.run(debug=True)

10. VSCode화면 좌측 항목중 벌레 선택 > 상단 DEBUG 선택 박스 클릭 후 Add Configuration 클릭

혹은

VSCode DEBUG메뉴 클릭 > Add Configuration 클릭

11. VSCode화면에서 launch.json이 자동생성 & 열리는데 .. 이때 뭔가 입력하는 창이 뜨는데 그냥 app.py뭐 어쩌구 나오면 선택해라.

12. launch.json열린 화면에서 FLASK_APP 속성 값 변경

"FLASK_APP" : "app.py" ---> "FLASK_APP": "${workspaceFolder}/flask_test/myapp.py",

13. F5 or debug버튼 클릭 등으로 디버그 모드 실행

* Environment: development * Debug mode: off * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

14. 브라우저에서 127.0.0.1:5000 접속했을 때 BP가 제대로 걸리는지 확인.

이후 디렉토리 하부에 flask_test외 다른 모듈을 설계하고, 구분해서 실행시키고 싶을 때는

10번을 반복해서 Add Configuration으로 디버그할 앱을 추가하고,

디버그 실행시 해당 구성을 선택하여 실행.

from http://woonizzooni.tistory.com/98 by ccl(A) rewrite - 2020-03-06 20:54:29

댓글

이 블로그의 인기 게시물

스프링 프레임워크(Spring Framework)란?

스프링 프레임워크(Spring Framework)란? "코드로 배우느 스프링 웹 프로젝트"책을 개인 공부 후 자료를 남기기 위한 목적이기에 내용 상에 오류가 있을 수 있습니다. '스프링 프레임워크'가 무엇인지 말 할 수 있고, 해당 프레임워크의 특징 및 장단점을 설명할 수 잇는 것을 목표로합니다. 1. 프레임워크란? 2. 스프링 프레임워크 "뼈대나 근간을 이루는 코드들의 묶음" Spring(Java의 웹 프레임워크), Django(Python의 웹 프레임워크), Flask(Python의 마이크로 웹 프레임워크), Ruby on rails(Ruby의 웹 프레임워크), .NET Framework, Node.js(Express.js 프레임워크) 등등. 프레임워 워크 종류 : 3. 개발 시간을 단축할 수 있다. 2. 일정한 품질이 보장된 결과물을 얻을 수 있다. 1. 실력이 부족한 개발자라 허다러도 반쯤 완성한 상태에서 필요한 부분을 조립하는 형태의 개발이 가능하다. 프레임워크를 사용하면 크게 다음 3가지의 장점 이 있습니다. 프레임워크 이용 한다는 의미 : 프로그램의 기본 흐름이나 구조를 정하고, 모든 팀원이 이 구조에 자신의 코드를 추가하는 방식으로 개발 한다. => 이러한 상황을 극복하기 위한 코드의 결과물이 '프레임워크' 입니다. 개발자는 각 개개인의 능력차이가 크고, 따라서 개발자 구성에 따라서 프로젝트의 결과 차이가 큽니다. 2. 스프링 프레임워크(Spring Framework) 자바 플랫폼을 위한 오픈 소스 애플리케이션 스프링의 다른 프레임워크와 가장 큰 차이점은 다른 프레임워크들의 포용 입니다. 이는 다시말해 기본 뼈대를 흔들지 않고, 여러 종류의 프레임워크를 혼용해서 사용할 수 있다는 점입니다. 대한민국 공공기관의 웹 서비스 개발 시 사용을 권장하고 있는 전자정부 표준프레임워크 이다. 여러 프레임워크들 중 자바(JAV...

[GCP] Flask로 TF 2.0 MNIST 모델 서빙하기

[GCP] Flask로 TF 2.0 MNIST 모델 서빙하기 Google Cloud Platform 우선 TensorFlow 2.0을 설치하자. 머신에 직접 설치하거나 도커를 다운받아 사용, 혹은 구글 colab을 활용( https://www.tensorflow.org/install)하면 되는데, TensorFlow에서 권장하는대로 머신에 VirtualEnv를 활용해서 설치하자 ( https://www.tensorflow.org/install/pip). 설치하는 김에 Flask도 같이 설치해보자. Compute Machine 하나를 생성(크게 부담 없는 예제라 g1 instance)하고, SSH를 연결하여 실행하면 된다. $ sudo apt update $ sudo apt install python3-dev python3-pip $ sudo pip3 install -U virtualenv # 굳이 system-wide로 flask를 설치할 필요는 없지만 그렇게 했다. $ sudo pip3 install flask $ sudo pip3 install flask-restful # virtualenv 환경에서 tensorflow 2.0 설치 $ virtualenv --system-site-packages -p python3 ./venv $ source ./venv/bin/activate # sh, bash, ksh, or zsh (venv) $ pip install --upgrade pip (venv) $ pip install --upgrade tensorflow 모든 환경이 마련되었으니, 우선 MNIST 모델을 TF 2.0으로 Training하여 모델을 Save 해 두자(tf_mnist_train.py). 대략 99% 이상 정확도가 나온다! import tensorflow as tf import numpy as np # 학습 데이터 load ((train_data, train_label), (eval_data, eval_label)) = tf....

Coupang CS Systems 채용 정보: 쿠팡 운용 관리 시스템을 구축 하고...

Coupang CS Systems 채용 정보: 쿠팡 운용 관리 시스템을 구축 하고... Global Operation Technology는 상품을 고객에게 지연 없이 전달 될 수 있도록 하는 조직입니다. 1997년, 초창기 아마존에 입사한다고 상상해보세요. 그 당시 누구도 e-commerce 산업이, 아마존이라는 회사가 지금처럼 성장하리라고는 생각하지 못했을 것입니다. 하지만, 그 당시 아마존을 선택한 사람들은 e-commerce 산업을 개척했고, 아마존을 세계적인 회사로 성장시켰습니다. 2016년 '아시아의 아마존'으로 성장하고 있는 쿠팡, 당신에게 매력적인 선택이 아닐까요? Global Operation Technology: eCommerce에서 주문을 한 뒤 벌어지는 상황에 대해서 호기심을 가져보신 적이 있나요? Global Operation Technology는 상품을 고객에게 지연 없이 전달 될 수 있도록 하는 조직입니다. 매일 최첨단 소프트웨어 기술을 이용해 고객의 주문을 받고 상품을 어느 창고에서 출고 시킬지, 포장을 하나의 박스 또는 여러 개로 나눌 것인지, 어떤 배송 루트를 선택하고 어떻게 고객에게 배송 상태를 보여줄지 결정하는 시스템과 서비스를 개발 합니다. What Global Operations Technology does: CS and C-Returns System 적극적 고객서비스를 바탕으로 고객의 목소리를 통해 끊임없이 고객 에게 서비스를 제공하고 Andon 메커니즘을 통해 고객의 목소리를 회사 전체와 공유합니다. 그리고 고객 문제 해결과 구매 이후 벌어질 수 있는 고객 문제를 사전에 예방하기 위한 시스템 개발을 통해 미래의 상황을 예측 합니다. Tranportation System TSP (Traveling Salesman Problem) 와 같은 CS 최적화 관리 문제를 다룹니다.배송 물품의 실시간 추적, 3P 하드웨어와 소프트웨어를 통합, 각 배송 루트에 할당되는 물량 예측하고 T...